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Abstract We prove that any spectral sequence obeying a certain growth law is the quantum 
spectrum of an equivalence class of classically integrable nonlinear oscillators. This implies that 
exceptions IO the Berry-Tabor rule for the disuibution of quantum energy gaps of classically 
integrable systems, are far more numerous than previously believed. In panicular. we show that 
for each finite dimension k. there are an infinite number of classically integrable k-dimensional 
nonlinear oscillators whose quanNm specmm reproduces the i m a p i n q  pan of Zeros on the 
critical line of the Riemann zeta function. 

1. Introduction 

An important theme in the quantum theory of classically chaotic systems is the relationship 
between the qualitative behaviour of the classical system and statistical properties of its 
quantum mechanical spectrum [I]. A much studied statistic in this regard is the distribution 
of energy-level spacings. According to a result of Berry and Tabor the values of the energy 
gaps of a generic integrable system are Poisson distributed [Z]. In general, this differs 
remarkably from the statistical distribution of energy gaps in the case of classically chaotic 
systems. These have been studied numerically and can be described by Wigner, GOE or 
GUE rather than Poisson statistics [I] .  

An exception to the result of Beny and Tabor~occurs in the case of the harmonic 
oscillator. However, Razavy investigated a family of integrable perturbations of the 
harmonic oscillator and found that this departure from Poisson statistics is non-generic in the 
sense that perturbing away from the harmonic oscillator, the,energy gaps quickly become 
Poisson distributed [3]. Another exception to the Berry-Tabor~result was pointed out by 
Casati, Chirikov and Guarneri, and occurs for the case of a free particle in a rectangular well 
[4]. Nevertheless Seligman and Verbaarshot observe that for potential wells close to the 
rectangular well, the distribution of energy gaps is close to being Poisson. They conclude 
that in this case a departure from Poisson statistics is also non-generic [5]. The general 
perception is that despite exceptional mses such as the harmonic oscillator and the free 
particle in a rectangular well, the statistics of quantum energy gaps of classically integrable 
systems are universally described by the Poisson distribution. 

In this paper we demonstrate that given a spec& sequence obeying a certain growth 
law, there exists an infinite family of classically integrabIe Hamiltonians whose quantum 
spectrum coincides with this sequence. This shows that a wide range of exceptions to the 
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Berry-Tabor rule are possible and that any quantum system whose spectrum obeys such 
a growth law, can be simulated by a family of classically integrable nonlinear oscillators. 
In particular, we derive a result concerning the hypothesis of Berry about the qualitative 
behaviour of an unknown classical system whose quantum energy levels are given by the 
imaginary part of the zeros on the critical line of the Riemann zeta function [6].  Berry 
argues that this classical system should be chaotic. We prove that this unknown classical 
system .is not unique and need not be chaotic. In fact we show that an infinite number 
of classically integrable nonlinear oscillators are capable of reproducing these zeros when 
quantized. 

2. One-dimensional case 

To justify our claims we require a number of theorems based on the following lemma and 
its generalization. 

Lemma I .  Given a sequence of complex numbers {c,, : 0 < n E Z} obeying a growth law 
c exp(a + bn) for some a E 8, b E I+, there exists an equivalence class S of entire 

functions of the complex plane such that for each s E S we have s(n) = <,,. 
We prove this by considering 

m 

s(z) = t f n ( z )  (1) 
n=0 

where for 0 4 n E Z, 0 c E E W and z # n, 
sin(2n(z -~n)) 

fn(z) = exp((z - n)(Zn + b + 6 ) )  2n(z-n) . 
Strictly speaking fn has a singularity at z = n. The singularity is, however, removable and 
so defining f n (n )  = 1, fn becomes an entire function of the complex plane. Eventually we 
will show that s is well defined by the series in (I), and that it too is an entire function of 
the complex plane. Observing that fnfm) = S,, for 0 < n, m E Z, the property s(n)  = <. 
follows from the definition of f,, and an explicit evaluation of the sum at z = n. This 
construction provides a single representative member of the equivalence class S. The 
difference between any two representatives is an entire function of the complex plane 
which vanishes on the non-negative integers. This set is infinite and denoting it by SO, 
the equivalence class is given by S = s + So. All that now remains is to show that s is 
entire. 

The domain (z E C : 121 < p E I) will be denoted by D,. Using A(D,) to represent the 
analytic functions on D,, the entire functions are naturally denoted A(C). The Weierstrass 
M-test provides a criterion for when the infinite sum of functions which are analytic on 
some domain D, converges to a function which is analytic on D. Specifically if (g.) is a 
sequence in A(D,), and if there exists a sequence of positive real numbers { A n )  with the 
property A, 2 Ilg,lI = suprco, [gn(z ) l ,  such that A, c m, then Czogn converges 
to g E A(D,). To prove that s is analytic on an arbitrary D,, we apply this test to the 
sequence defining s in (1). Each term lies in A(D,,) since each is a constant multiple of an 
entire function. Using the fact that I sin(z)/z[ C exp(lz1) we have for z E Do 

g exp(a+bn)exp((lzl -n)(2n +b+6))exp(2nlz -nl) 
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4 exp(a + bn)exp((lzl- n)(b + ZR + E ) )  exp(Zn(lzl+ n) )  
= exp(a + lzI(4n + b + E)) exp(-en) 
< exp(a + p(4z + b + E)) exp(-cn) . 

To apply the Weierstrass M-test we take A, = c,exp(--~n) where the constant c, = 
exp(a+p(4n + b  + E ) .  The sum x Z o A n  converges and so s E A(D, ) .  Since s E A(D,) 
for any'p E.%+ we have s E A(C) and lemma 1 is proved. 

Although there is a different s for each valid choice of a, b and E, the corresponding 
equivalence class S is independent of these values. Lemma 1 leads almost directly to the 
following theorem. 

Theorem 1. Given a real sequence ( E ,  : 0 < n E ~ Z ]  which obeys a growth law 
IE,I < exp(a + bn) for some a, b E W+, there exists an equivalence class of classically 
integrable nonlinear oscillators HC such that if ho is  the Hamiltonian of the simple harmonic 
oscillator, each hc  E HC is of the form hc(ho) and its quantum spectral sequence is given 

To see this constructs as in lemma 1 so that s(n) = E,, for 0 e n E Z. The equivalence 
class of classical Hamiltonians HC comes from replacing z with ho = (q2 + p 2 ) / 2  in each 
representative s E S. As ho is the Hamiltonian of the simple harmonic oscillator, each 
hc  E Hc is the Hamiltonian of a classically integrable nonlinear oscillator. 

Since s E A(C), each hc E HC can be identified with its Taylor expansion in ho which 
is everywhere convergent. This allows us to write h c  = ci (/io)' where each ci e E, 
and to define a corresponding quantum Hamiltonian operator 

by En. 

where N' is the product of i-copies of the number operator. With A = 1 N is essentially 
the Hamiltonian of the quantum harmonic oscillator. This procedure quantizes the classical 
Hamiltonian hc E HC and determines an appropriate operator ordering. The action of HQ 
on L2(x ,  dx) is well defined, the eigenfunctions of HQ are the familiar harmonic oscillator 
eigenfunctions, and the corresponding eigenvalues are simply E,. 

Although the coefficients of HQ in (2) depend on the choice of hc  E Hc, only values 
of hc(z )  when z is a positive integer play a role in the dynamics. It does not matter which 
hc E Hc we use to construct HQ, the resulting quantum system will be the same. HQ is a 
unique quantum Hamiltonian, uniquely determined by the spectral sequence, and which we 
can identify with the equivalence class of classical Hamiltonians Hc. 

This is a little surprising since it indicates that the correspondence of classical to quantum 
systems is not one-to-many as we might naively have expected. The usual correspondence 
between classical observables Oc(q,  p ) ,  and quantum observables OQ(q. p,A) is one-to- 
many in the sense that for a given classical Hamiltonian hc(q ,  p ) .  there is an infinite 
number of corresponding quantum Hamiltonians hQ(q. p .  A )  determined by the property 
hQ(q. p ,  0) = hc(q,  p). In our construction the redundancy due to different choices of 
operator ordering does not arise. A different redundancy does arise, however. This is 
because there are different classical systems hc which correspond to the single quantum 
system HQ. This is directly attributable to the fact that many different continuous functions 
interpolate a function whose values are specified only on the integers. For a given value 
of Planck's constant the differences bcliveen these classical systems occur on a scale 
smaller than A. For compact dynamical systems such as those used in our construction, 
the correspondence between classical. and quantum systems is. in fact, many-to-many. 
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3. Finitedimensional case 

It is straightforward to generalize the results of the previous section to the k-dimensional 
case. A natural generalization of lemma 1 is given by 

Lemma 2. Givenak-indexed sequence of complexnumbers ((n,...nk: 0 < ni E 2.1 < i Q k) 
obeying agrowth law e exp(u+blnl+...+bxnr) fora E 8, bi E %+, thereexists 
an equrvalence class S of entire analytic functions on Cx such that s(nl, . . . , nK) = (., ...,,, 
for all s' E S. 

This leads to a natural generalization of theorem 1 as follows. 

Theorem 2. Given a k-indexed sequence of real numbers (En,...n,: 0 Q ni E Z, 1 < i < k), 
which obeys the growth law [En,...nkl < exp(a + blnl + . . . + bknk) for some a E 8, 
bi E W+, there exists an equivalence class of classically integrable k-dimensional nonlinear 
oscillators Hc, where if hf for 1 < i < k are independent classical harmonic oscillator 
Hamiltonians, each hc E HC is of the form hc(hy,.  ..,hi) and its quantum spechal 
sequence is E,,.,.,,. 

The proofs of lemma 2 and theorem 2 are based on a consideration of 

where for 0 4 e; E % we have 

along with the usual technical provision at each of the removable singularities. If SO is 
the set of entire functions of Cx which vanish at the points (zl , . . . , z k )  = (nl , . . . , nx) for 
0 < ni E Z and 1 < i < k, the equivalence classes have the form S = s + So. Once 
again they are independent of the explicit values of U ,  b; and E; used to construct them. The 
proofs proceed as before with only minor alterations and so we omit the explicit details. 

4. Berry's hypothesis 

Comparing the spectral rigidity of quantum systems which are classically integrable to those 
which are classically chaotic, Berry considered the spectrum of an unknown dynamical 
system whose energy levels are given by the imaginary parts of the zeros on the critical line 
of the Riemann zeta function [6]. It had previously been conjectured by Montgomery that 
the distribution of energy gaps of such a system would be GUE [7]. Montgomery's conjecture 
was supported numerically by the work of Odlyzko according to a report by Sohigas and 
Giannoni [SI. Since GUE statistics are normally associated with classically chaotic systems 
which do not possess time-reversal invariance, this suggested to Berry that the corresponding 
unknown classical dynamical system must be chaotic 161. Berry provided further support 
for this hypothesis through theoretical work based on a semiclassical consideration of the 
rigidity of its spectral sequence [6]. 

We will now show that although there may exist classically chaotic systems whose 
quantum spectrum is given by the imaginary parts of the non-trivial zeros of the Riemann 
zeta function, there also exists an infinite family of classical integrable systems for which 
this is true. 

To see that this is so it suffices to show that the monotonic sequence Cn where 4 + iCn 
is the nth non-trivial zero of the Riemann zeta function satisfies the growth condition 
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of theorem 1. This assertion follows immediately from a classical theorem about the 
distribution of zeros on the critical line due to Hardy and Littlewood [9]. Their theorem 
states that if N(T) is the number of zeros of the Riemann zeta function on the interval 
[ f ,  + iT], then there exists a constant a so that 

N(T) > U T .  

This teHs us that if f + ic,, is the position of the nth zero, then 

c,, < a d n  

The sequence (cn : 0 < n E Z} is therefore exponentially bounded and satisfies the 
requirements of theorem 1, which we apply to deduce the following. 

Theorem 3. There exists an infinite family of classically integrable nonlinear oscillators 
whose quantum spectrum is given by the imaginary part of the sequence of zeros on the 
critical line of the Riemann zeta function. 

It is possible to go even further by relabelling the sequence with one index Cn as a 
sequence with k indices cn,...., for any 1 < k E Z, such that the growth condition of 
lemma 2 is still satisfied. There are many ways in which to do this and applying theorem 2 
we deduce the following. 

Theorem 4. For any finite dimension k. there exists an infinite family of classically integrable 
k-dimensional nonlinear oscillators whose quantum spectra reproduce the imaginary part of 
the zeros on the critical line of the Riemann zeta function. 

5. Conclusion 

Apart from an illustration of how the correspondence between classical and quantum 
dynamical systems is many-to-many rather than one-temany, our main conclusion is that 
exceptions to the rule of Berry and Tabor regarding the distribution of energy gaps in 
the spectrum of a classically integrable system, are more numerous than the literature 
suggests. In particular, we show that contrary to the Berry hypothesis, the unknown classical 
dynamical system whose chaotic quantum spectrum is given by the imaginary part of fhe 
non-trivial zeros of the Riemann zeta function is not unique and need not be chaotic. For a 
given value of Planck‘s constant and for any finite dimension of phase space, there exists 
an infinite number of classically integrable nonlinear oscillators whose quantum spectrum 
simulates that of Berry’s unknown system. We conclude that the Poisson distribution of 
energy gaps is not a universal property of integrable systems, but of a restricted class 
of systems for which the approximations made by Beny and Tabor are valid. It would 
be of considerable interest to characterize more precisely the range of validity of their 
approximations and consequently of their result regarding the statistical distribution of 
quantum energy gaps of classically integrable systems. 
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